翻訳と辞書
Words near each other
・ Simplic
・ Simplicala
・ Simplice Guedet Manzela
・ Simplicia
・ Simplicia (moth)
・ Simplicia (plant)
・ Simplicia armatalis
・ Simplicia cornicalis
・ Simplicia erebina
・ Simplicia extinctalis
・ Simplicia inareolalis
・ Simplicia inflexalis
・ Simplicia mistacalis
・ Simplicial approximation theorem
・ Simplicial category
Simplicial commutative ring
・ Simplicial complex
・ Simplicial group
・ Simplicial homology
・ Simplicial homotopy
・ Simplicial Lie algebra
・ Simplicial localization
・ Simplicial manifold
・ Simplicial map
・ Simplicial polytope
・ Simplicial presheaf
・ Simplicial set
・ Simplicial space
・ Simplicial sphere
・ Simplicially enriched category


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Simplicial commutative ring : ウィキペディア英語版
Simplicial commutative ring
In algebra, a simplicial commutative ring is a commutative monoid in the category of simplicial abelian groups, or, equivalently, a simplicial object in the category of commutative rings. If ''A'' is a simplicial commutative ring, then it can be shown that \pi_0 A is a commutative ring and \pi_i A are modules over that ring (in fact, \pi_
* A is a graded ring over \pi_0 A.)
A topology-counterpart of this notion is a commutative ring spectrum.
== Graded ring structure ==
Let ''A'' be a simplicial commutative ring. Then the ring structure of ''A'' gives \pi_
* A = \oplus_ \pi_i A the structure of a graded-commutative graded ring as follows.
By the Dold–Kan correspondence, \pi_
* A is the homology of the chain complex corresponding to ''A''; in particular, it is a graded abelian group. Next, to multiply two elements, writing S^1 for the simplicial circle, let x:(S^1)^ \to A, \, \, y:(S^1)^ \to A be two maps. Then the composition
:(S^1)^ \times (S^1)^ \to A \times A \to A,
the second map the multiplication of ''A'', induces (S^1)^ \wedge (S^1)^ \to A. This in turn gives an element in \pi_ A. We have thus defined the graded multiplication \pi_i A \times \pi_j A \to \pi_ A. It is associative since the smash product is. It is graded-commutative (i.e., xy = (-1)^ yx) since the involution S^1 \wedge S^1 \to S^1 \wedge S^1 introduces minus sign.
If ''M'' is a simplicial module over ''A'' (that is, ''M'' is a simplicial abelian group with an action of ''A''), then the similar argument shows that \pi_
* M has the structure of a graded module over \pi_
* A. (cf. module spectrum.)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Simplicial commutative ring」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.